Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(5): 100747, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490531

RESUMO

Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.

2.
Nat Commun ; 14(1): 5660, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704610

RESUMO

The RGD (Arg-Gly-Asp)-binding integrins αvß6 and αvß8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between homologous αvß6 and αvß8 and other RGD integrins, stabilize specific conformational states, and have high thermal stability could have considerable therapeutic utility. Existing small molecule and antibody inhibitors do not have all these properties, and hence new approaches are needed. Here we describe a generalized method for computationally designing RGD-containing miniproteins selective for a single RGD integrin heterodimer and conformational state. We design hyperstable, selective αvß6 and αvß8 inhibitors that bind with picomolar affinity. CryoEM structures of the designed inhibitor-integrin complexes are very close to the computational design models, and show that the inhibitors stabilize specific conformational states of the αvß6 and the αvß8 integrins. In a lung fibrosis mouse model, the αvß6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.


Assuntos
Integrinas , Fibrose Pulmonar , Animais , Camundongos , Membrana Celular , Microscopia Crioeletrônica , Modelos Animais de Doenças
3.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398153

RESUMO

The RGD (Arg-Gly-Asp)-binding integrins αvß6 and αvß8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between the two closely related integrin proteins and other RGD integrins, stabilize specific conformational states, and have sufficient stability enabling tissue restricted administration could have considerable therapeutic utility. Existing small molecules and antibody inhibitors do not have all of these properties, and hence there is a need for new approaches. Here we describe a method for computationally designing hyperstable RGD-containing miniproteins that are highly selective for a single RGD integrin heterodimer and conformational state, and use this strategy to design inhibitors of αvß6 and αvß8 with high selectivity. The αvß6 and αvß8 inhibitors have picomolar affinities for their targets, and >1000-fold selectivity over other RGD integrins. CryoEM structures are within 0.6-0.7Å root-mean-square deviation (RMSD) to the computational design models; the designed αvß6 inhibitor and native ligand stabilize the open conformation in contrast to the therapeutic anti-αvß6 antibody BG00011 that stabilizes the bent-closed conformation and caused on-target toxicity in patients with lung fibrosis, and the αvß8 inhibitor maintains the constitutively fixed extended-closed αvß8 conformation. In a mouse model of bleomycin-induced lung fibrosis, the αvß6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics when delivered via oropharyngeal administration mimicking inhalation, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.

4.
Sci Rep ; 13(1): 5324, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005394

RESUMO

Microbial glycan microarrays (MGMs) populated with purified microbial glycans have been used to define the specificity of host immune factors toward microbes in a high throughput manner. However, a limitation of such arrays is that glycan presentation may not fully recapitulate the natural presentation that exists on microbes. This raises the possibility that interactions observed on the array, while often helpful in predicting actual interactions with intact microbes, may not always accurately ascertain the overall affinity of a host immune factor for a given microbe. Using galectin-8 (Gal-8) as a probe, we compared the specificity and overall affinity observed using a MGM populated with glycans harvested from various strains of Streptococcus pneumoniae to an intact microbe microarray (MMA). Our results demonstrate that while similarities in binding specificity between the MGM and MMA are apparent, Gal-8 binding toward the MMA more accurately predicted interactions with strains of S. pneumoniae, including the overall specificity of Gal-8 antimicrobial activity. Taken together, these results not only demonstrate that Gal-8 possesses antimicrobial activity against distinct strains of S. pneumoniae that utilize molecular mimicry, but that microarray platforms populated with intact microbes present an advantageous strategy when exploring host interactions with microbes.


Assuntos
Anti-Infecciosos , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Galectinas/metabolismo , Polissacarídeos/metabolismo
5.
Blood ; 141(21): 2642-2653, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36638335

RESUMO

Antibodies against red blood cell (RBC) alloantigens can increase morbidity and mortality among transfusion recipients. However, alloimmunization rates can vary dramatically, as some patients never generate alloantibodies after transfusion, whereas others not only become alloimmunized but may also be prone to generating additional alloantibodies after subsequent transfusion. Previous studies suggested that CD4 T-cell responses that drive alloantibody formation recognize the same alloantigen engaged by B cells. However, because RBCs express numerous antigens, both internally and externally, it is possible that CD4 T-cell responses directed against intracellular antigens may facilitate subsequent alloimmunization against a surface RBC antigen. Here, we show that B cells can acquire intracellular antigens from RBCs. Using a mouse model of donor RBCs expressing 2 distinct alloantigens, we demonstrate that immune priming to an intracellular antigen, which would not be detected by any currently used RBC compatibility assays, can directly influence alloantibody formation after exposure to a subsequent distinct surface RBC alloantigen. These findings suggest a previously underappreciated mechanism whereby transfusion recipient responders may exhibit an increased rate of alloimmunization because of prior immune priming toward intracellular antigens.


Assuntos
Transfusão de Eritrócitos , Isoanticorpos , Transfusão de Eritrócitos/efeitos adversos , Eritrócitos , Antígenos , Isoantígenos , Imunização
6.
Methods Mol Biol ; 2442: 663-683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320552

RESUMO

Galectin-1 is a small (14.5 kDa) multifunctional protein with cell-cell and cell-ECM adhesion due to interactions with the carbohydrate recognition domain (CRD). In two types of muscular dystrophies, this lectin protein has shown therapeutic properties, including positive regulation of skeletal muscle differentiation and regeneration. Both Duchenne and limb-girdle muscular dystrophy 2B (LGMD2B) are subtypes of muscular dystrophies characterized by deficient membrane repair, muscle weakness, and eventual loss of ambulation. This chapter explains confocal techniques such as laser injury, calcium imaging, and galectin-1 localization to examine the effects of galectin-1 on membrane repair in injured LGMD2B models.


Assuntos
Galectina 1 , Distrofia Muscular do Cíngulo dos Membros , Sarcolema , Galectina 1/metabolismo , Galectina 1/farmacologia , Galectina 1/uso terapêutico , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Sarcolema/efeitos dos fármacos , Sarcolema/fisiologia
7.
Biomaterials ; 283: 121464, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306229

RESUMO

Micropatterned suspension culture creates consistently sized and shaped cell aggregates but has not produced organotypic structures from stable cells, thus restricting its use in accurate disease modeling. Here, we show that organotypic structure is achieved in hybrid suspension culture via supplementation of soluble extracellular matrix (ECM). We created a viable lung organoid from epithelial, endothelial, and fibroblast human stable cell lines in suspension culture. We demonstrate the importance of soluble ECM in organotypic patterning with the emergence of lumen-like structures with airspace showing feasible gas exchange units, formation of branching, perfusable vasculature, and long-term 70-day maintenance of lumen structure. Our results show a dependent relationship between enhanced fibronectin fibril assembly and the incorporation of ECM in the organoid. We successfully applied this technology in modeling lung fibrosis via bleomycin induction and test a potential antifibrotic drug in vitro while maintaining fundamental cell-cell interactions in lung tissue. Our human fluorescent lung organoid (hFLO) model represents features of pulmonary fibrosis which were ameliorated by fasudil treatment. We also demonstrate a 3D culture method with potential of creating organoids from mature cells, thus opening avenues for disease modeling and regenerative medicine, enhancing understanding of lung cell biology in health and lung disease.


Assuntos
Matriz Extracelular , Fibrose Pulmonar , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Pulmão , Organoides
8.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831431

RESUMO

Two of the main pathologies characterizing dysferlinopathies are disrupted muscle membrane repair and chronic inflammation, which lead to symptoms of muscle weakness and wasting. Here, we used recombinant human Galectin-1 (rHsGal-1) as a therapeutic for LGMD2B mouse and human models. Various redox and multimerization states of Gal-1 show that rHsGal-1 is the most effective form in both increasing muscle repair and decreasing inflammation, due to its monomer-dimer equilibrium. Dose-response testing shows an effective 25-fold safety profile between 0.54 and 13.5 mg/kg rHsGal-1 in Bla/J mice. Mice treated weekly with rHsGal-1 showed downregulation of canonical NF-κB inflammation markers, decreased muscle fat deposition, upregulated anti-inflammatory cytokines, increased membrane repair, and increased functional movement compared to non-treated mice. Gal-1 treatment also resulted in a positive self-upregulation loop of increased endogenous Gal-1 expression independent of NF-κB activation. A similar reduction in disease pathologies in patient-derived human cells demonstrates the therapeutic potential of Gal-1 in LGMD2B patients.


Assuntos
Galectina 1/uso terapêutico , Distrofia Muscular do Cíngulo dos Membros/patologia , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Disferlina/deficiência , Disferlina/metabolismo , Humanos , Inflamação/patologia , Masculino , Membranas , Camundongos , Fibras Musculares Esqueléticas/metabolismo , NF-kappa B/metabolismo , Multimerização Proteica , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais
9.
PLoS One ; 15(9): e0238441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881965

RESUMO

Limb-girdle muscular dystrophy type 2B (LGMD2B) is caused by mutations in the dysferlin gene, resulting in non-functional dysferlin, a key protein found in muscle membrane. Treatment options available for patients are chiefly palliative in nature and focus on maintaining ambulation. Our hypothesis is that galectin-1 (Gal-1), a soluble carbohydrate binding protein, increases membrane repair capacity and myogenic potential of dysferlin-deficient muscle cells and muscle fibers. To test this hypothesis, we used recombinant human galectin-1 (rHsGal-1) to treat dysferlin-deficient models. We show that rHsGal-1 treatments of 48 h-72 h promotes myogenic maturation as indicated through improvements in size, myotube alignment, myoblast migration, and membrane repair capacity in dysferlin-deficient myotubes and myofibers. Furthermore, increased membrane repair capacity of dysferlin-deficient myotubes, independent of increased myogenic maturation is apparent and co-localizes on the membrane of myotubes after a brief 10min treatment with labeled rHsGal-1. We show the carbohydrate recognition domain of Gal-1 is necessary for observed membrane repair. Improvements in membrane repair after only a 10 min rHsGal-1treatment suggest mechanical stabilization of the membrane due to interaction with glycosylated membrane bound, ECM or yet to be identified ligands through the CDR domain of Gal-1. rHsGal-1 shows calcium-independent membrane repair in dysferlin-deficient and wild-type myotubes and myofibers. Together our novel results reveal Gal-1 mediates disease pathologies through both changes in integral myogenic protein expression and mechanical membrane stabilization.


Assuntos
Disferlina/genética , Galectina 1/farmacologia , Distrofia Muscular do Cíngulo dos Membros/terapia , Animais , Linhagem Celular , Modelos Animais de Doenças , Disferlina/metabolismo , Galectina 1/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Miofibrilas/metabolismo
10.
Front Immunol ; 10: 1762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440233

RESUMO

Among responders to microbial invasion, neutrophils represent one of the earliest and perhaps most important factors that contribute to initial host defense. Effective neutrophil immunity requires their rapid mobilization to the site of infection, which requires efficient extravasation, activation, chemotaxis, phagocytosis, and eventual killing of potential microbial pathogens. Following pathogen elimination, neutrophils must be eliminated to prevent additional host injury and subsequent exacerbation of the inflammatory response. Galectins, expressed in nearly every tissue and regulated by unique sensitivity to oxidative and proteolytic inactivation, appear to influence nearly every aspect of neutrophil function. In this review, we will examine the impact of galectins on neutrophils, with a particular focus on the unique biochemical traits that allow galectin family members to spatially and temporally regulate neutrophil function.


Assuntos
Galectinas/imunologia , Imunidade Inata , Neutrófilos/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...